3.867 \(\int \frac{x^6}{\left (a+b x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=236 \[ \frac{3 x \sqrt{a+b x^4}}{2 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{3 \sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 b^{7/4} \sqrt{a+b x^4}}-\frac{3 \sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{7/4} \sqrt{a+b x^4}}-\frac{x^3}{2 b \sqrt{a+b x^4}} \]

[Out]

-x^3/(2*b*Sqrt[a + b*x^4]) + (3*x*Sqrt[a + b*x^4])/(2*b^(3/2)*(Sqrt[a] + Sqrt[b]
*x^2)) - (3*a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*
x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(7/4)*Sqrt[a + b*x^4
]) + (3*a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)
^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*b^(7/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.19101, antiderivative size = 236, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267 \[ \frac{3 x \sqrt{a+b x^4}}{2 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{3 \sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 b^{7/4} \sqrt{a+b x^4}}-\frac{3 \sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{7/4} \sqrt{a+b x^4}}-\frac{x^3}{2 b \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Int[x^6/(a + b*x^4)^(3/2),x]

[Out]

-x^3/(2*b*Sqrt[a + b*x^4]) + (3*x*Sqrt[a + b*x^4])/(2*b^(3/2)*(Sqrt[a] + Sqrt[b]
*x^2)) - (3*a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*
x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(7/4)*Sqrt[a + b*x^4
]) + (3*a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)
^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*b^(7/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 23.4443, size = 212, normalized size = 0.9 \[ - \frac{3 \sqrt [4]{a} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{2 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} + \frac{3 \sqrt [4]{a} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{4 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} - \frac{x^{3}}{2 b \sqrt{a + b x^{4}}} + \frac{3 x \sqrt{a + b x^{4}}}{2 b^{\frac{3}{2}} \left (\sqrt{a} + \sqrt{b} x^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6/(b*x**4+a)**(3/2),x)

[Out]

-3*a**(1/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x*
*2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(2*b**(7/4)*sqrt(a + b*x**4)) +
 3*a**(1/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x*
*2)*elliptic_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(4*b**(7/4)*sqrt(a + b*x**4)) -
 x**3/(2*b*sqrt(a + b*x**4)) + 3*x*sqrt(a + b*x**4)/(2*b**(3/2)*(sqrt(a) + sqrt(
b)*x**2))

_______________________________________________________________________________________

Mathematica [C]  time = 0.168475, size = 163, normalized size = 0.69 \[ \frac{-3 \sqrt{a} \sqrt{\frac{b x^4}{a}+1} F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+3 \sqrt{a} \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+\sqrt{b} x^3 \left (-\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}}\right )}{2 b^{3/2} \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[x^6/(a + b*x^4)^(3/2),x]

[Out]

(-(Sqrt[(I*Sqrt[b])/Sqrt[a]]*Sqrt[b]*x^3) + 3*Sqrt[a]*Sqrt[1 + (b*x^4)/a]*Ellipt
icE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 3*Sqrt[a]*Sqrt[1 + (b*x^4)/a]*
EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(2*Sqrt[(I*Sqrt[b])/Sqrt[
a]]*b^(3/2)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.016, size = 119, normalized size = 0.5 \[ -{\frac{{x}^{3}}{2\,b}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{{\frac{3\,i}{2}}\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6/(b*x^4+a)^(3/2),x)

[Out]

-1/2/b*x^3/((x^4+a/b)*b)^(1/2)+3/2*I/b^(3/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(
1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(
EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I
))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(b*x^4 + a)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^6/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{6}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(b*x^4 + a)^(3/2),x, algorithm="fricas")

[Out]

integral(x^6/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.8202, size = 37, normalized size = 0.16 \[ \frac{x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6/(b*x**4+a)**(3/2),x)

[Out]

x**7*gamma(7/4)*hyper((3/2, 7/4), (11/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)
*gamma(11/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(b*x^4 + a)^(3/2),x, algorithm="giac")

[Out]

integrate(x^6/(b*x^4 + a)^(3/2), x)